Suma en binario
Para aprender a sumar, con
cinco o seis años de edad, tuviste que memorizar las 100 combinaciones posibles
que pueden darse al sumar dos dígitos decimales. La tabla de sumar, en binario,
es mucho más sencilla que en decimal. Sólo hay que recordar cuatro combinaciones
posibles:
Las sumas 0 + 0, 0 + 1 y 1 + 0
son evidentes:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
Pero la suma de 1+1, que sabemos que es 2 en el sistema decimal, debe
escribirse en binario con dos cifras (10) y, por tanto 1+1 es 0 y se arrastra
una unidad, que se suma a la posición siguiente a la izquierda. Veamos algunos
ejemplos:
010 + 101 = 111 210 +
510 = 710
001101 + 100101 = 110010 1310 +
3710 = 5010
1011011 + 1011010 = 10110101 9110 + 9010 = 18110
110111011 + 100111011 = 1011110110 44310 + 31510 =
75810
Sustracción en binario
La técnica de la resta en binario es, nuevamente, igual que la misma operación en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo,sustraendo y diferencia.
-
Las restas 0 - 0, 1 - 0 y 1 - 1 son evidentes:
0 – 0 = 0
1 – 0 = 1
1 – 1 = 0
La resta 0 - 1 se resuelve, igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 10 - 1, es decir, 210 – 110 = 1. Esa unidad prestada debe devolverse, sumándola, a la posición siguiente. Veamos algunos ejemplos:
111 – 101 = 010 710 – 510 = 210
10001 – 01010 = 00111 1710 – 1010 = 710
11011001 – 10101011 = 00101110 21710 – 17110 = 4610
111101001 – 101101101 = 001111100 48910 – 36510 = 12410
Multiplicación binaria
La multiplicación en binario es más fácil que en cualquier otro sistema de numeración. Como los factores de la multiplicación sólo pueden ser CEROS o UNOS, el producto sólo puede ser CERO o UNO. En otras palabras, las tablas de multiplicar del cero y del uno son muy fáciles de aprender:
-
En un ordenador, sin embargo, la operación de multiplicar se realiza mediante sumas repetidas. Eso crea algunos problemas en la programación porque cada suma de dos UNOS origina un arrastre, que se resuelven contando el número de UNOS y de arrastres en cada columna. Si el número de UNOS es par, la suma es un CERO y si es impar, un UNO. Luego, para determinar los arrastres a la posición superior, se cuentan las parejas de UNOS.
Veamos, por ejemplo, una multiplicación:
Para comprobar que el resultado es correcto, convertimos los factores y el resultado al sistema decimal:
3349 * 13 = 43537
División binaria
Igual que en el producto, la división es muy fácil de realizar, porque no son posibles en el cociente otras cifras que UNOS y CEROS.
Consideremos el siguiente ejemplo, 42 : 6 = 7, en binario:
Se intenta dividir el dividendo por el divisor, empezando por tomar en ambos el mismo número de cifras (100 entre 110, en el ejemplo). Si no puede dividirse, se intenta la división tomando un dígito más (1001 entre 100).
Si la división es posible, entonces, el divisor sólo podrá estar contenido una vez en el dividendo, es decir, la primera cifra del cociente es un UNO. En ese caso, el resultado de multiplicar el divisor por 1 es el propio divisor. Restamos las cifras del dividendo del divisor y bajamos la cifra siguiente.
El procedimiento de división continúa del mismo modo que en el sistema decimal.